
d02 – Ordinary Differential Equations d02qfc

nag ode ivp adams roots (d02qfc)

1. Purpose

nag ode ivp adams roots (d02qfc) is a function for integrating a non-stiff system of first order
ordinary differential equations using a variable-order variable-step Adams method. A root-finding
facility is provided.

2. Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_ivp_adams_roots(Integer neqf,
void (*fcn)(Integer neqf, double x, double y[],

double f[], Nag_User *comm),
double *t, double y[], double tout,
double (*g) (Integer neqf, double x, double y[],

double yp[], Integer k, Nag_User *comm),
Nag_User *comm, Nag_ODE_Adams *opt, NagError *fail)

3. Description

Given the initial values x, y1, y2, . . . , yneqf the function integrates a non-stiff system of first order
ordinary differential equations of the type, y′

i = fi(x, y1, y2, . . . , yneqf ), for i = 1, 2, . . . ,neqf, from
x = t to x = tout using a variable-order variable-step Adams method. The system is defined by
a function fcn supplied by the user, which evaluates fi in terms of x and y1, y2, . . . , yneqf , and
y1, y2, . . . , yneqf are supplied at x = t. The function is capable of finding roots (values of x) of
prescribed event functions of the form

gj(x, y, y′) = 0, j = 1, 2, . . . , neqg.

(See nag ode ivp adams setup (d02qwc) for the specification of neqg).

Each gj is considered to be independent of the others so that roots are sought of each gj individually.
The root reported by the function will be the first root encountered by any gj. Two techniques for
determining the presence of a root in an integration step are available: the sophisticated method
described in Watts (1985) and a simplified method whereby sign changes in each gj are looked for
at the ends of each integration step. The event functions are defined by a function g supplied by the
user which evaluates gj in terms of x, y1, . . . , yneqf and y′

1, . . . , y
′
neqf . In one-step mode the function

returns an approximation to the solution at each integration point. In interval mode this value is
returned at the end of the integration range. If a root is detected this approximation is given at
the root. The user selects the mode of operation, the error control, the root-finding technique and
various integration inputs by a prior call of the setup routine nag ode ivp adams setup (d02qwc).

For a description of the practical implementation of an Adams formula see Shampine and Gordon
(1975) and Shampine and Watts (1979).

4. Parameters

neqf
Input: the number of differential equations.
Constraint: neqf ≥ 1.

fcn
The function fcn must evaluate the functions fi (that is the first derivatives y′

i) for given
values of its arguments x, y1, y2, . . . , yneqf .
The specification of fcn is:

[NP3275/5/pdf] 3.d02qfc.1



nag ode ivp adams roots NAG C Library Manual

void fcn(Integer neqf, double x, double y[], double f[], Nag_User *comm)

neqf
Input: the number of differential equations.

x
Input: the current value of the argument x.

y[neqf ]
Input: y[i−1] contains the current value of the argument yi, for i = 1, 2, . . . ,neqf.

f[neqf ]
Output: f[i − 1] must contain the value of fi, for i = 1, 2, . . . ,,neqf.

comm
Input/Output: pointer to a structure of type Nag User with the following
member:

p - Pointer
Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type.

t
Input: after a call to nag ode ivp adams setup (d02qwc) with state = Nag NewStart (i.e.,
an initial entry), t must be set to the initial value of the independent variable x.
Output: the value of x at which y has been computed. This may be an intermediate output
point, a root, tout, or a point at which an error has occurred. If the integration is to be
continued, possibly with a new value for tout, t must not be changed.

y[neqf ]
Input: the initial values of the solution y1, y2, . . . , yneqf .
Output: the computed values of the solution at the exit value of t. If the integration is to be
continued, possibly with a new value for tout, these values must not be changed.

tout
Input: the next value of x at which a computed solution is required. For the initial t, the
input value of tout is used to determine the direction of integration. Integration is permitted
in either direction. If tout = t on exit, tout must be reset beyond t in the direction of
integration, before any continuation call.

g
The function g must evaluate a given component of g(x, y, y′) at a specifed point.

If root-finding is not required the actual argument for g must be the NAG defined null double
function pointer NULLDFN.
The specification of g is:

3.d02qfc.2 [NP3275/5/pdf]



d02 – Ordinary Differential Equations d02qfc

double g(Integer neqf, double x, double y[], double yp[], Integer k,
Nag_User *comm)

neqf
Input: the number of differential equations.

x
Input: the current value of the independent variable.

y[neqf ]
Input: the current values of the dependent variables.

yp[neqf ]
Input: the current values of the derivatives of the dependent variables.

k
Input: the component of g which must be evaluated.

comm
Input/Output: pointer to a structure of type Nag User with the following
member:

p - Pointer
Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type.

comm
Input/Output: pointer to a structure of type Nag User with the following member:

p - Pointer
Input/Output: the pointer p, of type Pointer, allows the user to communicate
information to and from the user-defined functions fcn() and g(). An object of the
required type should be declared by the user, e.g. a structure , and its address assigned
to the pointer p by means of a cast to Pointer in the calling program. E.g. comm.p =
(Pointer)&s.

opt
Input: pointer to a structure of type Nag ODE Adams as initialised by the setup function
nag ode ivp adams setup (d02qwc).
Output: the following structure members hold information as follows (see also Section 6):

root - Boolean
Output: if root-finding was required (neqg > 0 in a call to the setup function
nag ode ivp adams setup (d02qwc)), then root specifies whether or not the output value
of the parameter t is a root of one of the event functions. If root = FALSE, then no
root was detected, whereas root = TRUE indicates a root.
If root-finding was not required (neqg = 0) then on exit root = FALSE.
If root = FALSE, then opt.index, opt.type, opt.events and opt.resids are indeterminate.

index - Integer
Output: the index k of the event equation gk(x, y, y′) = 0 for which the root has been
detected.

type - Integer
Output: information about the root detected for the event equation defined by
opt.index. The possible values of type with their interpretations are as follows:

type = 1
a simple root, or lack of distinguishing information available;
type = 2
a root of even multiplicity is believed to have been detected, that is no change in sign
of the event function was found;
type = 3

[NP3275/5/pdf] 3.d02qfc.3



nag ode ivp adams roots NAG C Library Manual

a high order root of odd multiplicity;
type = 4
a possible root, but due to high multiplicity or a clustering of roots accurate evaluation
of the event function was prohibited by round-off error and/or cancellation.

In general, the accuracy of the root is less reliable for values of type > 1.

events - Integer *
Output: array pointer containing information about the kth event function on a very
small interval containing the root, t. All roots lying in this interval are considered
indistinguishable numerically and therefore should be regarded as defining a root at t.
The possible values of events[j − 1], j = 1, 2, . . . ,neqg, with their interpretations are as
follows:

events[j − 1] = 0
the jth event function did not have a root;
events[j − 1] = −1
the jth event function changed sign from positive to negative about a root, in the
direction of integration;
events[j − 1] = 1
the jth event function changed sign from negative to positive about a root, in the
direction of integration;
events[j − 1] = 2
a root was identified, but no change in sign was observed.

resids - double *
Output: array pointer, opt.resids[j − 1], j = 1, 2, . . . ,neqg, contains value of the jth
event function computed at the root, t

yp - double *
Output: array pointer to the approximate derivative of the solution component yi at
the output value of t. These values are obtained by the evaluation of y′ = f(x, y) except
when the output value of the parameter t is tout and opt.tcurr �= tout, in which case
they are obtained by interpolation.

tcurr - double
Output: the value of the independent variable which the integrator has actually reached.
tcurr will always be at least as far as the output value of the argument t in the direction
of integration, but may be further.

hlast - double
Output: the last successful step size used in the integration.

hnext - double
Output: the next step size which the integration would attempt.

ord last - Integer
Output: the order of the method last used (successfully) in the integration.

ord next - Integer
Output: the order of the method which the integration would attempt on the next step.

nsuccess - Integer
Output: the number of integration steps attempted that have been successful since the
start of the current problem.

nfail - Integer
Output: the number of integration steps attempted that have failed since the start of
the current problem.

tolfac - double
Output: a tolerance scale factor, tolfac ≥ 1.0, returned when nag ode ivp adams roots
exits with fail.code = NE ODE TOL. If rtol and atol are uniformly scaled up by
a factor of tolfac and nag ode ivp adams setup (d02qwc) is called, the next call to
nag ode ivp adams roots is deemed likely to succeed.

3.d02qfc.4 [NP3275/5/pdf]



d02 – Ordinary Differential Equations d02qfc

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE NO SETUP
The setup function nag ode ivp adams setup (d02qwc) has not been called.

NE SETUP ERROR
The call to setup function nag ode ivp adams setup (d02qwc) produced an error.

NE NEQF
The value of neqf supplied is not the same as that given to the setup function
nag ode ivp adams setup (d02qwc). neqf = 〈value〉 but the value given to
nag ode ivp adams setup (d02qwc) was 〈value〉.

NE T SAME TOUT
On entry tout = t, t is 〈value〉.

NE T CHANGED
The value of t has been changed from 〈value〉 to 〈value〉. This is not permitted on a
continuation call.

NE DIRECTION CHANGE
The value of tout, 〈value〉, indicates a change in the integration direction. This is not
permitted on a continuation call.

NE TOUT TCRIT
tout = 〈value〉 but crit was set TRUE in setup call and integration cannot be attempted
beyond tcrit = 〈value〉.

NE MAX STEP
The maximum number of steps have been attempted.
If integration is to be continued then the routine may be called again and a further max step
steps will be attempted (see nag ode ivp adams setup (d02qwc) for details of max step ).

NE ODE TOL
The error tolerances are too stringent. rtol and atol should be scaled up by the factor
opt.tolfac and the integration function re-entered. opt.tolfac = 〈value〉 (see Section 6).

NE WEIGHT ZERO
An error weight has become zero during the integration, see d02qwc document; atol[〈value〉]
was set to 0.0 but y[〈value〉] is now 0.0. Integration successful as far as t = 〈value〉.
The value of the array index is returned in fail.errnum.

NE STIFF PROBLEM
The problem appears to be stiff.
(See Chapter Introduction for a discussion of the term ‘stiff’). Although it is inefficient to
use this integrator to solve stiff problems, integration may be continued by resetting fail.code
and calling the routine again.

NE SINGULAR POINT
A change in sign of an event function has been detected but the root-finding process appears
to have converged to a singular point of t rather than a root.
Integration may be continued by calling the routine again.

NE NO G FUN
Root finding has been requested by setting neqg > 0, neqg = 〈value〉, but argument g is a
null function.

6. Further Comments
If the function fails with fail.code = NE ODE TOL, then the combination of atol and rtol may
be so small that a solution cannot be obtained, in which case the function should be called again

[NP3275/5/pdf] 3.d02qfc.5



nag ode ivp adams roots NAG C Library Manual

using larger values for rtol and/or atol when calling the setup function nag ode ivp adams setup
(d02qwc). If the accuracy requested is really needed then the user should consider whether there
is a more fundamental difficulty. For example:

(a) in the region of a singularity the solution components will usually be of a large magnitude.
The function could be used in one-step mode to monitor the size of the solution with the aim
of trapping the solution before the singularity. In any case numerical integration cannot be
continued through a singularity, and analytical treatment may be necessary;

(b) for ‘stiff’ equations, where the solution contains rapidly decaying components, the function will
require a very small step size to preserve stability. This will usually be exhibited by excessive
computing time and sometimes an error exit with fail.code = NE ODE TOL, but usually an
error exit with fail.code = NE MAX STEP or NE STIFF PROBLEM. The Adams methods
are not efficient in such cases. A high proportion of failed steps (see parameter opt.nfail) may
indicate stiffness but there may be other reasons for this phenomenon.

nag ode ivp adams roots can be used for producing results at short intervals (for example, for graph
plotting); the user should set crit = TRUE and tcrit to the last output point required in a prior
call to nag ode ivp adams setup (d02qwc) and then set tout appropriately for each output point in
turn in the call to nag ode ivp adams roots.

The structure opt will contain pointers which have been allocated memory by calls to
nag ode ivp adams setup (d02qwc). This allocated memory is then accessed by
nag ode ivp adams roots and, if required, nag ode ivp adams interp (d02qzc). When all calls to
these functions have been completed the function nag ode ivp adams free (d02qyc) may be called
to free memory allocated to the structure.

6.1. Accuracy

The accuracy of integration is determined by the parameters vectol, rtol and atol in a prior call
to nag ode ivp adams setup (d02qwc). Note that only the local error at each step is controlled by
these parameters. The error estimates obtained are not strict bounds but are usually reliable over
one step. Over a number of steps the overall error may accumulate in various ways, depending
on the properties of the differential equation system. The code is designed so that a reduction in
the tolerances should lead to an approximately proportional reduction in the error. The user is
strongly recommended to call nag ode ivp adams roots with more than one set of tolerances and
to compare the results obtained to estimate their accuracy.

The accuracy obtained depends on the type of error test used. If the solution oscillates around
zero a relative error test should be avoided, whereas if the solution is exponentially increasing an
absolute error test should not be used. If different accuracies are required for different components
of the solution then a component-wise error test should be used. For a description of the error
test see the specifications of the parameters vectol, atol and rtol in the routine document for
nag ode ivp adams setup (d02qwc).

The accuracy of any roots located will depend on the accuracy of integration and may also be
restricted by the numerical properties of g(x, y, y′). When evaluating g the user should try to write
the code so that unnecessary cancellation errors will be avoided.

6.2. References

Shampine L F and Gordon M K (1975) Computer Solution of Ordinary Differential Equations -
The Initial Value Problem W H Freeman & Co., San Fransisco.

Shampine L F and Watts H A (1979) DEPAC - Design of a user oriented package of ODE solvers
Sandia National Laboratory Report SAND79-2374.

Watts H A (1985) RDEAM - An Adams ODE Code with Root Solving Capability Sandia National
Laboratory Report SAND85-1595.

7. See Also

nag ode ivp adams gen (d02cjc)
nag ode ivp adams setup (d02qwc)
nag ode ivp adams free (d02qyc)
nag ode ivp adams interp (d02qzc)

3.d02qfc.6 [NP3275/5/pdf]



d02 – Ordinary Differential Equations d02qfc

8. Example

We solve the equation

y′′ = −y, y(0) = 0, y′(0) = 1

reposed as

y′
1 = y2

y′
2 = −y1

over the range [0, 10.0] with initial conditions y1 = 0.0 and y2 = 1.0 using vector error control
(vectol = TRUE) and computation of the solution at tout = 10.0 with tcrit = 10.0 (crit =
TRUE). Also, we use nag ode ivp adams roots to locate the positions where y1 = 0.0 or where the
first component has a turning point, that is y′

1 = 0.0.

8.1. Program Text

/* nag_ode_ivp_adams_roots(d02qfc) Example Program
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>

#ifdef NAG_PROTO
static void ftry02(Integer neqf, double x, double y[], double yp[],

Nag_User *comm);
#else
static void ftry02();
#endif

#ifdef NAG_PROTO
static double gtry02(Integer neqf, double x, double y[], double yp[],

Integer k, Nag_User *comm);
#else
static double gtry02();
#endif

#define NEQF 2
#define NEQG 2

main()
{
double y[NEQF], atol[NEQF], rtol[NEQF];
Boolean crit, alter_g, vectol, one_step, sophist;
double t, tout, tcrit;
Integer i, max_step, neqf, neqg;
Nag_Start state;
Nag_ODE_Adams opt;

Vprintf("d02qfc Example Program Results\n");

neqf = NEQF;
neqg = NEQG;
tcrit = 10.0;
state = Nag_NewStart;
vectol = TRUE;
one_step = FALSE;
crit = TRUE;
max_step = 0;
sophist = TRUE;
for (i = 0; i <= 1; ++i)

{

[NP3275/5/pdf] 3.d02qfc.7



nag ode ivp adams roots NAG C Library Manual

rtol[i] = 0.0001;
atol[i] = 1e-06;

}

d02qwc(&state, neqf, vectol, atol, rtol, one_step, crit,
tcrit, 0.0, max_step, neqg, &alter_g, sophist, &opt,
NAGERR_DEFAULT);

t = 0.0;
tout = tcrit;
y[0] = 0.0;
y[1] = 1.0;

do
{
d02qfc(neqf, ftry02, &t, y, tout, gtry02, NAGUSER_DEFAULT, &opt,

NAGERR_DEFAULT);

if (opt.root)
{
Vprintf("\nRoot at %11.5e\n", t);
Vprintf("for event equation %1ld", opt.index);
Vprintf(" with type %1ld", opt.type);
Vprintf(" and residual %11.5e\n", opt.resids[opt.index-1]);

Vprintf(" Y(1) = %11.5e Y’(1) = %11.5e\n", y[0], opt.yp[0]);

for (i = 1; i <= neqg; ++i)
{
if (i != opt.index && opt.events[i-1] != 0)

{
Vprintf("and also for event equation %1ld", i);
Vprintf(" with type %1ld", opt.events[i-1]);
Vprintf(" and residual %11.5e\n", opt.resids[i-1]);

}
}

}

} while (opt.tcurr < tout && opt.root);

/* Free the memory which was allocated by
* d02qwc to the pointers inside opt.
*/

d02qyc(&opt);

exit(EXIT_SUCCESS);
} /* main */

#ifdef NAG_PROTO
static void ftry02(Integer neqf, double x, double y[], double yp[],

Nag_User *comm)
#else

static void ftry02(neqf, x, y, yp, comm)
Integer neqf;
double x;
double y[], yp[];
Nag_User *comm;

#endif
{
yp[0] = y[1];
yp[1] = -y[0];

} /* ftry02 */

#ifdef NAG_PROTO
static double gtry02(Integer neqf, double x, double y[], double yp[],

Integer k, Nag_User *comm)
#else

static double gtry02(neqf, x, y, yp, k, comm)

3.d02qfc.8 [NP3275/5/pdf]



d02 – Ordinary Differential Equations d02qfc

Integer neqf;
double x;
double y[], yp[];
Integer k;
Nag_User *comm;

#endif
{
if (k == 1) return yp[0];
else return y[0];

} /* gtry02 */

8.2. Program Data

None.

8.3. Program Results

d02qfc Example Program Results

Root at 0.00000e+00
for event equation 2 with type 1 and residual 0.00000e+00
Y(1) = 0.00000e+00 Y’(1) = 1.00000e+00

Root at 1.57076e+00
for event equation 1 with type 1 and residual -5.92381e-16
Y(1) = 1.00003e+00 Y’(1) = -5.92381e-16

Root at 3.14151e+00
for event equation 2 with type 1 and residual -1.28576e-16
Y(1) = -1.28576e-16 Y’(1) = -1.00012e+00

Root at 4.71228e+00
for event equation 1 with type 1 and residual 3.54189e-16
Y(1) = -1.00010e+00 Y’(1) = 3.54189e-16

Root at 6.28306e+00
for event equation 2 with type 1 and residual 2.47328e-15
Y(1) = 2.47328e-15 Y’(1) = 9.99979e-01

Root at 7.85379e+00
for event equation 1 with type 1 and residual -3.20697e-15
Y(1) = 9.99970e-01 Y’(1) = -3.20697e-15

Root at 9.42469e+00
for event equation 2 with type 1 and residual -2.90637e-15
Y(1) = -2.90637e-15 Y’(1) = -9.99854e-01

[NP3275/5/pdf] 3.d02qfc.9


	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction



